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The deposition dynamics of particles (or the growth of a rigid crystal) on a disordered substrate
at a finite deposition rate is explored. We begin with an equation of motion which includes, in
addition to the disorder, the periodic potential due to the discrete size of the particles (or to the
lattice structure of the crystal) as well as the term introduced by Kardar, Parisi, and Zhang (KPZ) to
account for the lateral growth at a finite growth rate [Phys. Rev. Lett. 56, 889 (1986)]. A generating
functional for the correlation and response functions of this process is derived using the approach
of Martin, Siggia, and Rose [Phys. Rev. A 8, 423 (1973)]. A consistent renormalized perturbation
expansion to first order in the non-Gaussian couplings requires the calculation of diagrams up to three
loops. To this order we show, for this class of models which violates the the fluctuation-dissipation
theorem, that the theory is renormalizable. We find that the effects of the periodic potential and
the disorder decay on very large scales and asymptotically the KPZ term dominates the behavior.
However, strong nontrivial crossover effects are found for large intermediate scales.

PACS number(s): 05.70.Ln

I. INTRODUCTION

A. General

A few years ago the near equilibrium dynamics of a
growing crystalline surface was elucidated [1,2]. It was
found that a roughening transition occurs at T = T be-
tween a high-temperature rough phase and a phase with
a flat surface for T < T,.. The mobility of the growing
surface drops from a finite value to zero as T — T,'.
In the low-temperature phase the growth is “activated”
with the formation of higher “islands” on top of the flat
surface. A similar behavior occurs in the deposition of
cubic particles with diffusion on a flat substrate. The
transition in this case is as function of the inherent noise
due to spatial and temporal fluctuations in the deposi-
tion.

In view of the existence of a low temperature (or low
noise) flat phase, the question of how disorder in the sub-
strate would change the behavior had to be addressed.
We have initiated a comprehensive study of the related
questions. A short letter which announced the surpris-
ing results was published elsewhere [3]. In a previous
full paper [4] (denoted by I in the following) we have
presented the detailed calculation and analysis for the
near-equilibrium dynamics. In this regime the averaged
growth rate is small. The equation of motion is derived
from the Hamiltonian of the system. Both detailed-
balance and the fluctuation-dissipation theorem (FDT)
[5] hold. Yet we have found very nontrivial results: super-
rough correlations, temperature-dependent dynamics ex-
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ponent, and a nonlinear relation between the average
growth rate and the driving force were found below a
super-roughening transition temperature T,,.

In the present paper, the second in the series, we
present our detailed calculations and results for the dy-
namics far from equilibrium. In this case the equation of
motion cannot be derived from a Hamiltonian. Detailed-
balance and the FDT are both violated. That situation
represents a much more serious theoretical challenge since
even the very renormalizability of the process is question-
able.

The equation of motion we analyze describes the de-
position of cubic particles on a random substrate. It will
also apply to the surface of a crystal if the solid is very
rigid. Since the effects of the disorder in the substrate
will be felt only up to a height h* (which is larger if
the solid is more rigid), our theory will apply as long as
h < h*.

The width of a growing surface w follows generally the
scaling form [6, 7]

w(L,t) ~ L*f(t/L?), (1)

where t is the time and L is the linear size of the sys-
tem. « is the roughening exponent and z is the dynamic
exponent.

The leading difference between near- and far-from-
equilibrium dynamics is due to the lateral growth. If
the growth rate is finite, the lateral growth adds a term
proportional to (ﬁh)2 to the equation of motion. This
term was derived by Kardar, Parisi, and Zhang (KPZ)
[§] as the most relevant term in the expansion in term of

Vh.
As the renormalization group (RG) analysis shows,

the KPZ nonlinearity is marginally relevant in 2+1 di-
mensjons. The asymptotic behavior is controlled by this
nonlinearity, which violates the FDT. Consequently, the
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roughness of the growing surface is also affected by the
nonlinearity. Several simulations showed a ~ 0.4 [9,10]
which is larger than that of the near-equilibrium case
(e = 0). Many variants of KPZ-related models have
been studied in recent years [6,7,11-22].

The effects of such a term on the growing crystalline
surface on a flat substrate was considered by Hwa, Kar-
dar, and Paczuski (HKP) [23]. We review and revise
their results in Sec. IB. Section II will be devoted to the
derivation of the generating functional, and the descrip-
tion of the RG procedure. Sections III, IV, and V are
devoted to the outline of the calculations of the different
renormalization factors. Extensive details of these calcu-
lation are relegated to the appendixes. In Sec. VI the
recursion relations are derived. Section VII is devoted to
the analysis of the asymptotic and crossover behaviors
which follows from these recursion relations. Our main
conclusions are summarized in Sec. VIII.

B. Review of previous works

The system we shall study in this paper has three im-
portant and nontrivial ingredients: (i) the periodic po-
tential, (ii) the disorder in the substrate, and (iii) the
KPZ nonlinearity arising from the lateral growth in the
presence of a finite driving force (or deposition rate). Pa-
per I discussed the case in which (i) and (ii) are present.
The major physical consequences, namely the existence
of a super-rough “glassy phase” for T' < T, with intrigu-
ing static and dynamic properties, were discussed there
and will not be elaborated further here. Our goal here
is to see how the addition of (iii) (i.e., the KPZ term)
modifies the behavior.

However, we can also take another point of view and
ask how the addition of (ii) (i.e., the disorder in the sub-
strate) is modifying the behavior found in the presence
of (i) and (iii). The model which discussed the nonequi-
librium growth on a flat surface in the presence of both
the periodic potential and the KPZ nonlinearity was an-
alyzed by HKP [23]. The equation of motion which de-
scribes the growing surface under these calculations is

h(Z A o=
i 8D _ p oy yivh(e )+ ) (9m)?

+ X2 sinly(h(F )] +CED. ()

In this equation h(Z,t) is the local height at time ¢;
Z = (z,y) are the coordinates in the 2d basal plane; y is
the microscopic mobility; F is the driving force; v is the
surface tension; A is the coefficient of the KPZ nonlinear-
ity (which is proportional to F); y, is the coefficient of
the leading harmonies (higher harmonies are irrelevant);
vy = 27", where b is the vertical lattice spacing; a is the
horizontal lattice spacing; and (&, t) is the noise in the
deposition (or due to thermal fluctuations) that obeys

(@ t)¢(E 1) = 2D6%(E — & )8(t — t). (3)

HKP obtained a set of recursion relations from which
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they reached several conclusions. They found a criti-
cal temperature T.. For T > T., y; decays slowly to
zero and the large scale behavior is determined by the
KPZ coupling. Approaching 7. from above, the linear-
response macroscopic mobility (namely the ratio v/F
where v = (%) is the averaged growth rate in the limit
F — 0) vanishes as (In|T — T¢|)~". In the low tem-
perature phase T < T, they have found that y, grows
indefinitely large and therefore have concluded that the
surface is flat.

While reanalyzing their work we have discovered a
term that was overlooked in their calculations and which
might affect their latter conclusion. Indeed it may be
shown that a term of the form y; cos(2wh) is generated
under renormalization from the contraction of the terms
A(Vh)? and y, sin(2wh). This term also feeds back into
the renormalization of y,.

The recursion relations to lowest order are

d wuD A
(2= TEZ) gy — s, (4)
dl v v
d wuD A
W2 _ (o TEZ Y2 + p—Y1, (5)
dl v v

where p = 1[4n21n(4/3)(£2)2 + (#2)] (the lattice spac-
ing is taken to unity for simplicity). The two harmonic
terms may be combined into a single term:

ly| sin[2mh + ¥(1)], (6)

with y? = 4 + 33, and 9(1) = tan™" 41 /y,.

If we look at the flow of |y| and ¥ we find that indeed
|y| = oo for T < T, which would indicate a flat surface
if 9 were to remain constant. However, the recursion
relations imply that the phase shift angle is rotating with
I like ¥(l) = wl, with an angular velocity w ~ A/v. Since
! = Inb, where b is the rescaling factor, it means an ever
changing ¥ ~ wlnb, with rescaling.

Therefore it is not obvious that the surface is flat.
Hopefully, higher-order terms in the recursion relations
of y1,y2, and v will help to identify with more confidence
the nature of the low-temperature phase.

h(x)

FIG. 1. A two-dimensional cut (along a lattice plane
perpendicular to the disordered substrate) of the three-
dimensional system.
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C. Introducing the disorder

As we explained in I, and which is clear from Fig.
1, the disorder will shift the origin of the periodic po-
tential by a random and uncorrelated amount at every
point £ in the basal plane [3,4]. We take the deposited
particle as having a rectangular shape with a square
base of linear extent a and height b in the growth direc-
tion. Then the periodic potential becomes proportional
to sin[2* (h(Z,t) + d(Z))], where d(Z) are the local devi-
ation in the height of the substrate. Let us denote the
associate phase O(&) = 2nd(Z)/b. It obeys

(0@ =@ — a252(3 — 7). (")

We have assumed that d(Z) are typically of order b (or
larger) and that if correlations exist in d(Z) at different
Z they are at most short range (in which case they fall

in the same universality class as the ¢ correlated disorder
J
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we study here). The equation of motion we need to study
is therefore

Oh(z,t - Ae
ﬁ‘l% = F +v[V*h(z, )] + 5(Th)®

+g sin[yh(Z,t) + ©(z)] + ((Z,t).  (8)

II. GENERATING FUNCTIONAL
AND BASIC DIAGRAMS

The Martin, Siggia, and Rose (MSR) [24-26] method
is utilized to obtain the generating functional for the cor-
relation and response theory. An auxiliary field ¢h(Z,t)
is introduced to enforce the equation of motion through
an integral representation of the § function. Then the
thermal noise and the disorder are averaged to yield the
following generating functional:

(Zo|J, J)) disorder = / DhDh exp{ / d?zdt [Dﬁzif —h (%h — jwV2h — ﬂ%(ﬁh)z)]

+ﬁ:;r:§ / / P dt dt' (@, t)h(3, ') cos[y(h(Z,t) — h(Z, t,))]}. "

A. Basic diagrams

From now on we change notation: h to ¢ and k to .
As explained in detail in I the Gaussian (quadratic) part
of the “action” gives rise to the bare response function

(B(@ )P~ —w)) -

= 10
n(g? + m?) + iw’ 19

which is depicted in Fig. 2. The bare correlation function
is :

2Dyu?
W@ rmprar

where m, the mass of the field ¢, is introduced to control
the infrared divergences in the Feynman integrals. (In
the two-dimensjonal regularization, it is notorious [25]
that their infrared and ultraviolet divergences will mingle
together without introducing masses for the fields.)

In the momentum and time representation, they are

(¢(q, w)(-¢, —w)) =

— &AL~

G

FIG. 2. The Feynman diagram for the correlation func-
tion and response function.

-
given by [26]

(B3, )$(=G,t')) = 0(t — t')e @ +mIE—t) - (19)

- - Dp (2 +m?)|t—t
(@ (=0, t) = eI,
where §(t) = 1 for t > 0 and 6(t) = 0 for t < 0. The basic
vertex ¢¢ cos(¢ — 4)’) and ¢(6¢)2 are drawn in Figs. 3
and 4, respectively.

(13)

B. Renormalization group procedure

We follow the minimal subtraction scheme. The renor-
malization parameters are related to the bare ones by
the so-called Z factors. The minimal scheme consists in
extracting from the diagrams only the divergent parts
which are all expressed in terms of functions of the di-
mensionality of the system.

The bare and renormalized vertex functions can be re-
lated by factors of Zy4, Z 4 For instance,

- + - )

_FIG. 3. The Feynman
¢(£1 t)¢(57 tl) COS{qS(E, t) - ¢(51 t,)]'

diagram representing
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N L
(Z3)7(24)2
xI'n, (g, w; 0, mo,a), (14)

FI%,L(q) W;SR, MR, Ii) =

where ¢g and ¢o label renormalized parameters (g, , . . .)
and bare parameters (go, o, - - -), respectively. ¢ and w
are the external momentum and frequency, respectively.
In the corresponding vertex function, a is a short-distance
cutoff and « is a mass scale. Here I'y, ; stands for the
vertex function with N external ¢ lines and L external
¢ lines. The factors, Z4 and Z 4> are set to remove the
divergent parts of the vertex function T'.

The following renormalization constants are defined
through the relations between the bare and the renor-
malized couplings [25, 27-29]:

DO = ZDDa go = Z997 A0 = ZXAv (15)

i =midh, A =26k,
(16)
¢ = Zyo%,

where Z = 242;'

In the next section we concentrate on the procedures
to calculate the Z factors. The details are relegated to
the appendixes.

The renormalized perturbation theory even to lower
nontrivial orders in g and A has to be consistent order
by order in 4. It also requires the calculations of the
Feynman diagrams [25, 29] with up to three loops.

= (Z;)%%

J
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FIG. 4. The basic diagram for A.

III. CALCULATIONS OF Zp AND Z,

The renormalization of p is not affected in the pres-
ence of the KPZ nonlinearity since the associated vertex
function I'y,; comes with one external ¢ and one exter-
nal ¢ and the basic vertex A contains derivatives on its
two ¢ legs. Thus the factor Z, remains the same as in
paper I (equilibrium dynamics), and so does the recur-
sion relation for u. On the other hand, the parameter D
suffers additional renormalization of order A\?. Basically,
the renormalization of D from A? is the same as that of
D encountered in the KPZ model. Here, we still focus on
the same vertex function I'; o as we did in the previous
paper (I).

Obviously, the first nontrivial contribution begins from
the second order in A\. As shown in Fig. 5, the vertex
function is modified by the associated integral with AZ.
The corresponding integral is given by

(2Dop3)*p’p

(“02'\0) g | #7 [

— _]_‘ 2/,.3Nn2 * 2> 1 1
- 4A0(”0D0)/ d p(27r)2 (p2+m2)

1
= 303 (~5 atem? ).

As illustrated in Fig. 5, the symmetry factor for this
diagram is 2 and another factor 2 arises from the differ-
entiation of the external legs. One more factor } is due
to the coefficient from the expansion of interaction with
power 2 for the utilization of A2. With the combination
of Eq. (D6) in paper I, we have

FIG. 5. The Feynman diagram for I'z,0 up to order A%.

27f (ud(p? + m?)? + 92][#0(1’ +m?)? + Q2

(17)

f

Diud 1
—2Dp? = (Zq;,)2 { —2Doud — ——92—@/\2 <_Z; ln(cmzaz))

+v*Vegpo 1n(cm2a2)] . (18)

Therefore
Du)?

Zp =1+ 3

1 el fg
(4—1rln(cm2a2)) In(cm?a?).
(19)

IV. THE CALCULATION OF Z,

As in the harmonic model of paper I, we consider the
vertex function Iz o(§,t; —¢t ) in the limit |t — t'| - o
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[28]. The calculation of Z,; will be based on Eq. (8.3)
of Goldschmidt and Schaub [28], where the renormal-
ization factor is substituted in that equation to make
I20(4,t; —q, t') (§ — 0) finite. Therefore to find out Zy
is just to calculate the renormalization of I'; 0. The con-
tributions to Z, we need to sum are of order g2 (as in
paper I) and of order A%g.

The combination of g and A% leads to two types of
diagrams, two-loop and three-loop diagrams. Some of
the associated diagrams are canceled by each other as
shown in Figs. 6 and 7. The other nonvanishing di-
agrams, including six two-loop and two three-loop dia-
grams, are shown in Figs. 8-15. The detailed calcu-
lations of two-loop integrals are given in Appendix A,
where we also explain the cancellation of subdivergences
of some diagrams. The sum of the leading and subleading
divergences contributing to Z; are listed in Eq. (22) (see
the third and fourth terms). In Appendix B, we present
the detailed calculation of the leading divergences in the
three-loop diagrams and also show that they do not con-
tain any subdivergence.

Now, what remains to complete the three-loop re-
sults is just to sum up the leading divergent terms in
In(cm2a?), which essentially contribute to the recursion
relations. The In(cmZ2a?) contribution of the diagram in
Fig. 14 will be

—1(I31-1—2I31-2 — 2I31_3)

4449
The contribution from the diagram in Fig. 15 is:
Isz—1+ 21322+ 20323
1 11(3
= E[ZIC +Ip —2Ig + 5 1n(3)
2
—-iIn(3) - 3 In(3))- (21)

Now we are in a position to calculate Z,. Inserting the
above calculation results in the self energy in Ref. [28],
we obtain

2,2 2 2,212
Zg — 1_501n(cm2a2) + A 8 (DI‘) [ln(cm a )]

8 1672
—5+11In(%) , 2,21n(cm?a?)
B 16 7 (uD)"A C(4m)?
+(-00.5)y4(Duxe o) (22)

By using 6o = § + 3A%(Dp)y? In(cm (4") , we can calcu-
late the recursion relation of g, as will be shown in the
next section. As we will see, the term In(cm?a?)? is can-
celled when we derive the Callan-Symanzik (CS) [25, 29]
equation. Thus the scaling equation is consistent.

V. THE CALCULATION OF Z,

For the calculation of Z), we consider the vertex func-
tion I'y 2. For the diagrams in Figs. 16 and 17, one can

= gIB +2Ip + 41 + 20% ln(%) - 6[1n(§)]2
—41In(2) — $(In2)? + 221n(3)
+3%(1,2) — 3‘1’(%a 2) - E(%’ 2). (20)  write the associated integrals as
|
2Dp5 - (£ — k)

oo o oo
nla =/ dzk/ dQ —
R A T

]
1
[}
[}
]
(A)
|
|
1
U
TE
(B)

FIG. 6.
grams.

Two mutually canceled two-loop Feynman dia-

B + ] — 0} 4(§ - B+ w2}

(23)

(B)

FIG. 7. Two mutually canceled two-loop Feynman dia-
grams.
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"o

3

FIG. 8. A two-loop Feynman diagram: FD 2!1.

FIG. 12. A two-loop Feynman diagram: FD 215.

7 i

=

FIG. 9. A two-loop Feynman diagram: FD 2[2.

FIG. 13. A two-loop Feynman diagram: FD 216.

FIG. 10. A two-loop Feynman diagram: FD 2[3.

FIG. 14. A three-loop Feynman diagram: FD 3l1.

FIG. 11. A two-loop Feynman diagram: FD 214. FIG. 15. A three-loop Feynman diagram: FD 3i2.
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>

D P
&®+p2.Q »

FIG. 17. A Feynman diagram: FD nlb.

FIG. 16. A Feynman diagram: FD nla.

and
o= [k [Tan 2Dpp- (5 F) £(9), (24)
—o -0 {pl(§ + k)2 + m?] — iQH{p?((§ — k)% + m?]2 4+ Q2}
where
* dteit 1 Ro(0. t)~2 ¥2Co(0,t)
€ [l—zﬁl 0( ) )‘Y ]e
(25)

() ='72/ dtem‘[Ro(o,t)ev’co(o,t)] =_/

—o0 -
= %(iﬂ) / dte"m(ev’co(o,t) ~1).
D (

(€ + E)? and y = (€ - E)2. The summation of nla in Eq. (23) and nlb in Eq. (24) is

For simplicity, let =
proportional to ff; dﬂw,%ﬁﬁ,—) F ().
With the help of Eq. (25), the frequency dependent part can be integrated out first:
(26)

/00 i ($)(i9)6int e—-zt e—yt
e (RO (2 + 92 z2—y? 22— y2
We then have:
LS 7-(5-F) (e HlE+R +m?e _ —ul(F=B+m?ey 1P L B2 ey
(2m)% Jooo ™ 4(F + K2 + m2) (P F)p? 2
- _ 2 .2 m2 Lo N S k2 4m?)t
(P = e~ r(Fr R +mNty 5 By (p ~> e st -
=5 (P &) (-2 4 +5- (B-k —2)(F-F)t. (27
7 (5-F) 7 (5F) T @R @D

(A)

N ?

(B)

(B)
FIG. 19. The other two Feynman diagrams contributing

FIG. 18. Two Feynman diagrams contributing to I'y 2. to I'y 2.
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In the hydrodynamic (long-wavelength) limit, 5 — 0.
The relevant term in the first term in Eq. (27) can be
easily found as

1
/_ dzk( 2) t —p(i? +m?)t _ p2§;e—um’t. (28)

The relevant term in second term of Eq. (27) is

27 k2e —p(k2+m?)t
P*(2) / d6 cos? 0 / kdkt—————
k% + m?

— 2i —um3t

=p 2p'e . (29)
Thus there are no contributions to the renormalization
of A due to their mutual cancellation. Other possible
diagrams arise, but result in no contributions. In Fig.
18 those two diagrams will not contribute the renor-
malization when one imposes the long-time prescription
(2ezt = 0). The diagrams in Fig. 19 do not contribute ei-
ther, since the interaction g is local in space and therefore
there is no p-dependent part of the vertex I'y ;. To sum
up, A suffers no renormalization within the perturbative
expansion to order g, and therefore Z, = 1.

VI. RECURSION RELATIONS

Once the Z factors are known to leading order in g,
the recursion relations are obtained via the so-called 8
functions [25, 26, 29]:

s () (5E),
pon(22) —-on(2222) .
By =k (%)b = —gK (%)b ) (32)
Bo =k (%)b : (33)

where subscript b means that all bare parameters are
fixed when one performs the differentiations [25, 26, 29]
and k is a mass scale. The renormalization of the cou-
plings may also be related to the same 3 functions.

The renormalization Z factors are the ratios between
the corresponding renormalized and bare parameters.
Therefore it is a standard procedure to extract from their
dependence on the momentum scale x (or the bare mass
my) the flow of the renormalized couplings under rescal-
ing of all length scales by b = exp(l). The first step is
to compute the so-called 3 functions, which when sub-
tracted from the naive (engineering) dimension of the
couplings yield the flow equations. Following this proce-
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dure, rescaling length scales z — I;z,_ momenta k — bk,
time t — b*t, and frequencies w — b~ *w, we find the fol-
lowing recursion relations:

dv
= =0, (34)
dv my?
o= o (35)
% =2F + 7\, (36)
dD A? v?y/cg
( 2 Du+ —5#—) D, (37)
().
Dm 2 ’) 2r
=(2- - T g2 39
( "7 )77 Dw?? (39)
dl =0. (40)

< is not renormalized because Z4 = 1 and keeps its bare
value v = 2m. For the same reason v is not renormalized
and may be chosen as v = 1.

The two constants are ¢ = 1€’ = 0.7931 where E is
the Euler constant and ¢’ ~ 180.08, which is derived from
the sum of the terms contributing to Z, in Eq. (22).

VII. ASYMPTOTIC BEHAVIOR

In this chapter we proceed with the analysis of the
physical implications of the recursion relations. We be-
gin, in the next section by looking at the asymptotic des-
tination of the flows which will yield the physical prop-
erties on very large scales of time and space. In the fol-
lowing subsection we will analyze the crossover behavior
which determines the properties on intermediate scales.

A. Asymptotic behavior

The analysis of the recursion relations may be facili-
tated by the introduction of a “temperature” like variable
(temperature is not well defined far away from equilib-
rium where the Einstein relation does not hold). Here we
define it by T = Dy (it is not the thermodynamic tem-
perature). Its recursion relation is obtained from Egs.
(37) and (38). It obeys

¥
dl ~ 8n?

where the critical value Dy = 1/ is substituted. Since A
and « are kept constant, this equation may be integrated:

(41)

— 2%
T(l) = Toeans". (42)

We see that no matter how small T, is T'(I) will grow
indefinitely with { = Inb such that

() =T (5) e (43)

a

So the effective “temperature” becomes higher on
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longer length scales. Asymptotically the system is always
at a high temperature. The growth of T is, however, quite
slow. Therefore crossover effects discussed below play an
important role.

What is the effect of high T'7 For that we have to look
at the flow of g:

do(t) _

() ,
dl 2r !

27

(44)

c)\J ol 'yg

It is clear that if T'(!) grows very large it will cause g(I)
to decay to zero, no matter what are the bare values go,
To, and X. Once g — 0 the asymptotic behavior becomes
equivalent to that of the KPZ equation.

We thus conclude that asymptotically on very large
scales and very long times the scaling properties are those
associated with a far-from-equilibrium growth without
the disorder and the periodic potential. The behavior will
be determined by the effect of the lateral growth alone.
The KPZ properties in 2 + 1 dimensions (dominated by
an inaccessible fixed point) will be the asymptotic ones
for the system under consideration.

B. Crossover behavior

As we have found in the previous section, the temper-
ature T'(l) rises with the scale quite slowly. Hence the
decay of g to zero might also be slow. As long as g is
not vanishing the effects of the disorder and the periodic
potential are still felt. Hence we should expect a slowing
down of the dynamics. This slowing down will be observ-
able on larger scales as well because the mobility obeys
the equation

o _ v \/' g( )

and therefore
p(l) = poe=" Vel dl'la)/TA (46)

The ratio p(l)/po does depend on the integral

J(l) = / ;((ll ))dl (47)

and clearly J({) is sensitive to g(l) on small scales as well.
To evaluate J(I) we need to know T'(!) given in Eq. (42)

and g¢(l), which we calculate next. Given T'(I), g(I) is
found by integration of its recursion relation:
1 o2 .0 / dze—*®) (48)
g(l) g(O) 87r2 0
where

a:juz’(,_—(e*"v'/z1 -1). (49

A2
s(z) = [_'y_ -2

Clearly the second term dominates for large . Hence we
see that for large [

g(l) ~ exp{—exp(Al)}, (50)
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with A ~ 5)}:%;

It is easy to see that for large enough I, g(!) decays to
zero faster than exponentially. Since T'(I) diverges, the
most important contribution to J(I) comes from small
(or at most intermediate) values of I. At large I, J(I)
asymptotically approaches a constant and its dependence
on [ becomes much weaker.

This asymptotic value of J(!) depends mostly on the
bare values of the parameters. To summarize, the mobil-
ity decays fast on initial small scales and then saturates
to an almost constant value on large scales.

VIII. CONCLUSIONS

In this work we have investigated the behavior of a
class of growth systems in which three different effects
play important roles: periodicity, disorder, and lateral
growth. Our model applies to the situations in which
all three effects are present in deposition processes or
solidification of rigid crystals.

In I we looked at the system near equilibrium when the
lateral growth is negligible. There we found a continuous
transition from a rough phase at high temperature into
a super-rough and glassy phase for T' < Tj,.

The main conclusion of the present work is that far
from equilibrium the KPZ term prevents this transition.
The ultimate asymptotic behavior is dominated by the
KPZ nonlinearity, while the second nonlinear term (ob-
tained upon averaging the periodic potential over the dis-
order) is irrelevant.

We have seen, however, that while this term is decaying
it still affects the behavior on intermediate scales. The
effect of the disorder in the periodic potential is to slow
the dynamics. In particular, the mobility decays from its
bare value as

% = exp[—4n? x 1.78J (1)), (51)

where J(I) is given by Eq. (47). It is clear that the be-
havior on intermediate scales drastically depends on the
bare values of the parameters.

We have also shown that the theory is consistently
renormalizable to first order in A and g. To obtain the
correct renormalization we had to keep diagrams up to
and including three nontrivial loops. As far as we are
aware, no other calculation has shown the renormaliz-
ability up to this order for a dynamic system for which
the fluctuation-dissipation theorem is not satisfied. It is
reassuring to see that the renormalization group can be
successfully applied to the dynamics far from equilibrium.
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APPENDIX A: TWO-LOOP CALCULATION n stands for the sequel. First we look at the two-loop
FOR Z, diagrams. The basic rules [26, 30] for the calculations of

these diagrams have been described in the Appendix of

our previous paper I. Here we shall simply write down

As explained in Sec. IV, the calculation of Z, is based  the corresponding integral for each diagram. We employ

on the evaluation of the vertex function I'; . For clarity, the momentum-time representation for correlation and
we neglect the prefactors and symmetry factors. Here we  response functions, in terms of which the corresponding
have six two-loop and two three-loop Feynman diagrams.  integrals will be easily handled.

The two-loop diagrams will be denoted by FD 2In, and Feynman diagram (FD) 2!1 is shown in Fig. 8. The

three-loop diagrams will be denoted by FD 3in, where  corresponding integral over time is given by
J

ty R .,
Ipp 211 = /oodty/ dt, [g-(@—P)]F-q) e*[q2+(ﬁ~q')2+2m2]tze~(p2+m2)tye—(p2+m2)(ty—t,)_ (A1)
0 0 (¢% + m?)(p? + m?)

The integration of the time dependent sectors gives

oo ty
/ dty / dtme_[q2+(ﬁ—®2+mz_172]tz 3’2(P2+m2)tv
0 0

oo -1 2, (= 2 2
= dt e—2(p’+mz)tv — e_[q +H(F-9) +mJty _ 1
[ [+ G- 7 2= pA]. ]
1
C 22+ m?)[p? + @ + (F— )2 + 3m2]’ (42)
By decomposing 7'- ¢ into
L o, —1 .
p-q=—2—[p2+q2+(p—q')2+3m2—2p2—2q2—3m2] (A3)
and ¢ (¢ — p) into
o 1 .
(qz._p.q‘):§[p2+q2+(p—(j')2+3m2—2p2—3m2], (A4)
we obtain
(¢-P)
®% +m2) (@ + mA)[p? + 7 + (5 - )2 + 3]
1 1 B 2
2 (PP +mA) (2 +m?)  (p? 4 m?)(@ +m?)[p? + ¢? + (F - §)? + 3m?]
2 + irrelevant t (A5)
- 1Irrelevans erms | . )
(P2 + m?)%[p? + g% + (F — §)* + 3m?]

Since we impose the minimal subtraction (MS) [25, 29] scheme, the unwanted nonsingular parts (finite parts) will
be ignored in all calculations in this paper. In this entire paper, an irrelevant term means a term which does not
contribute to the singular part of the integral. We sometimes use an equal sign to represent the equality of the singular

parts on both sides.
We substitute Eqs. (A4) and (A5) into Eq. (A1), and obtain

I -1 (®-7-9 [P+ ¢+ (F— * +3m? — 2p? — 3m?
FREE T\ @ A mA (g +m?) | (5P + mA) (@ + D) pE 4 g 1 (F— D)2+ B

® + mD)2? + g2 + (5 9 + 3m]

B 1[ 1 7 q 1

_[p2+q2+(ﬁ—q)2+3m2—2p2—3m2]}

T |G maE T B mi) (@t md) | (52 4 md)(g 4 m?)

2 1 2
R R R e B ) R PR [P e )
= [:}B - é]’ (A6)




50 DYNAMICS OF PARTICLE DEPOSITION ... . I ... 4455

where
B= ! (A7)
T (P +m?)(¢% +m?)’
~ 1
é= A8
@+ P+ + G- D7+ m (A8)

and the second term in Eq. (A6) is discarded because it vanishes after the integration over the momentum variables.
In the same way, the associated integral for Fig. 9 reads

oo te [-t = - >
T @D [T F-D] @ +m*)te o[-0 +8 +2mllty | g~ (07 +m?) (2 —1,)
I = dt, dt - p?+m?)t, P—@)*+q* +2m?||ty| o~ (p7+m?) (ta—ty) A9
FD 212 /(; [00 v (qg +m2) [(p_®2+m2]e e ( )

To begin with, we integrate over the time variables, and that yields

oo 0
/ dt, / dtye_z(p2+mz)t'e(Pz"'mz)tv'*‘[(ﬁ"i)z'Fq’+2m2]tv
0 —oo

oo t
z - 1
+ [ dt, / dt, e~ 20" +mM)te o (P7 +mI )ty — (P D)7 +a" +2m?)ty _ - . (A10
A Rl R i e M

By inserting Eq. (A10) into Eq. (A9), we obtain

7 (7= Dld- (7~ D)
@+ m)) @+ m2)[(F— D +m| + 2 + (5 D7 + 37

3 ' 1 1
1+ F- AP+ + G- P+ oml 2P+ @+ G D+ ImA(g £ )
=(34-3C], (A11)
where
-~ q2
A= s = . Al2
@+ G~ D+ mAlp + ¢ + (5~ 97 + 3] (A12)
For the Feynman diagram in Fig. 10, the integral with the time variables is written as
(7-P)(7-P) /"" /" () (e —t) [(F—)3+a3+2m3
T = dt, dt, e~ P +m*)(ta—ty)  [(F—9)" +q" +2m7]ty
FD 213 @+ m2)(@ + m?) J, A ye e (A13)
Again, we integrate over the time variables first, and obtain
* te 5 1 1
dt, dt, e 2" +m™)te o~ [ +(F—D? +2m7 )ty +(p7 +m?)t, _ . Al4
fooae [ 2@ p e G- e A
With the help of Eq. (A14), Eq. (A13) is simplified to
G- 9FD 1 1 Lo s
= = ~[4C - B].
(p% +m2) (g% + m2?) 2 (p? + m?)[p? + @2 + (F — )2 + 3m?] 3l ] (A15)

Now we turn to the diagram in Fig. 11. The associated integral is represented by

2((= oo t
PlF-9) -4 ® (D3 tmDt.  —[ad+(5—3)3 2 (o33N (e
I — - P*+m?)t, —[a? +(P—)* +2m?]|ty| ,—(p*+m?)(t-—2 )
FD 214 = @ 2)[(7 - 92 7 J, dt i dtye e vle v (A16)

The time dependent sector in Fig. 11 is identical to Eq. (A10), so we will not repeat the calculation here. In the same
fashion, the integrand takes the form

[qz_i"'ﬂ _[l
(¢ +m?)[(F—~ 9 +m?|[p? + ¢ + (F— )2 + 3m?] 2

For the diagram in Fig. 12, we have the associated integr

(s}

- A]. (A17)

£

as
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. (v — 2 oo te .
IFD 2l5 = (qz [3_ Tfl”;)(p?zprn)z)‘/o dtzA dtye“[qz-f—(P—q‘)’—}—Zmz]tve_(p"‘—f-m’)(tz—tv)e"(p3+m2)tz‘ (A18)

The time dependent term is integrated out first:

oo t
. ) . .
gt / dt. o=@ HE- D +2m?]ty (PP +m?) (ta—ty) o~ (PP +mP)ts _ 1 . (A19
/0 z 0 Yy 2(p2+m2)[p2+q2+(ﬁ_®2+3m2] ( )

Then we obtain

__g-G-9l*) 1 1
(42 + m2)(p? + m?) 2 (p2 + m2)[p? + ¢ + (P — q)? + 3m?]

We turn to the simplest figure among two-loop diagrams, Fig. 13, of which the related integral is evaluated as

= i(B -20). (A20)

2 2
dtp®Ro(p,t)Co(P,t) p = ~ / dp——— | . A21
{/m/0 P Ro(5,1)Col7 )} 4{ [ (A21)
1 [ 1 oo 1 1
I =—- d"”——-—/ d%p——— =—-B. A22
FD 216 4/—00 P(p2+m2) . P(p2+m2) 2 ( )

Now we go on to perform the integration over the momentum variables. Before the evaluation of the singular parts
of the integrals, it will be helpful to present some identities, which will play important roles in later calculations and
have been frequently employed in these types of calculations. The first one is the Feynman parametrization formula,
which reads

1 F(a+ﬂ+'y++e)/‘l /1 xa—lyﬁ—l.._zv—l
= oo | dzdudz- - 85(1—z—y—z--- )
A°BP...E° _ T(@L(BIL() --T©) Jo , Craves (l-z-y-2z )(Az;+By+..._+_Ez)a+ﬂ+‘y+---+a

(A23)
A set of integral formulas is also valuable and is shown as
o° - d/2
Jo = / d% — ﬁl =T (M —p*)#2er <a - 51) . (A24)
o (k2+2k-p+ M) T(a) 2
/ dik— f‘ = —p’Jo. (A25)
—o0 (k2 +2k-p+ M)~

With these formulas, one can evaluate the singular parts of the integrals. Let X = [ [ dpdgX, where X = A, B,
or C, and d = 2 + €. The evaluations of B,C, and A are carried out as

> 1 « T(1-9)
1/2 _ d _ od/2( 2\4-1 2
B /_ood”(punﬂ) M) T
oo oo 1
C= d""/ dq
[ B e e e

1/00 dd*/co d'q 1 = + ingular t
=z y4 q P nonsingular terms
2o T Jew (PP Hm) (PP + @ -G+ M)

(A26)

=l/ e 1 42T -4d/2) . 31
2/ " (PP+m?) (1) (3P + gm?)=</2

1 JT(—e/2(=) (§)€/ D (a27)
2 b

I(1—¢/2) \4

q2

A= dd*/ a’q - _
/_.,o Pl " +md) -2+ mip® + ¢ + (P — @) + 3m?]

q2

=/°° d"ﬁ'/m deq — -,
—oo oo (PP ME)[(F - 9)? + m?][p? + ¢* + (P — ) + 2m?]
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=3[ e[ [ [ IR d (FErpn | g g T TT TR TP
- /_: 7 /: ddq‘/o1 L1=+y<1dzdy [p2 —p- 42z + :u)qjr (z +y)g? + m?]?

- " [ /ol,ﬂ,a“’“’yr(sr_(s‘;/z) O (e v

= (,,)d/zr(3r(3d/2) /‘ A o dedy / dd-o e (:+ T {qz :2

2—¢/2
+rr+—ym—+m}
L anT(3=d/2) .
=7 g / A,W G+o) - @D

}d+2 2(2—- ‘/2)( )4/2F(1+d/2) I'(—¢)

"{ I GT T I(d/2) T(@-¢/2)

VRS I et 1
i e O e o (a28)

The singular parts of the integral in Eq. (A28) can be evaluated by the changes of variables, z = st, y = s(1 —t).
Let A’ denote the z,y dependent part in Eq. (A28). We obtain

= / / dzdy 1
0 Jo z4y<1 [(z +y) — (= + §)?]2+e/2

1 1 s
= dsdt
R e
1 1 1
= [} ot SRR

1 1 1 1 1 1
=A /o dadt {[1 —A = Leopt 1} + /0 ds e (A29)

From the form of Eq. (A29), it is not hard to see that the singular term as € — 0 is the mam'festation of the singular

behavior of the pole s = 0 in the integral. To simplify the expressions of the equations, the term 1 — £ 3 is symbolized
by a. Equation (A29) can be rewritten as

1 1
' _ 1 2a8 — a?s?
4 —/o /(; dsdt <73 (1— as)2+e/2 / dsslﬂ/z (A30)

The analysis of two terms in Eq. (A30) will be carried out in order. The first term in Eq. (A30) is recast into

t 1 « 1t 1 [
dsdt — ———— - =
/0 /; 80t 2 (1 — as)2+e/2 + A _/o d"dtse (1 — as)i+e/2

/ / dadt e e / / dadt [_h‘(s)]z‘:e/z / / dsdt 2 + 09, (A31)

The second term in Eq. (A31) is of order € and therefore is discarded. The first term in Eq. (A31) is evaluated as

1ot a 1 1 1
A- /o det(l — as)?te/2 = 1+¢/2 {/(; dt[[l — alet/2 - 1]}

1 1 1
T1te2 {/0 dtzt—_—t;f)?;/?“l}’ (A32)

where
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1 1
1 1
/0 dt (t — t’)1+e/2 /0 dtt1+e/2 [(1 — I)l+e/2 - 1] +/0 dtt1+e/2

.

RyPRRES ENIES LS
o t1+e/2 ( _£)1+e/2

1
/ dt t1+e/2 1- Eyi+e2 +0(e) +

1 1
“Z/o e - E+0(e)
The third term in Eq. (A31) is
/(; /0 dsdt—————(1 EPATED
/ / dsdt ) + O(¢)
2
——L dtln [1— (1-— %) + O(e)
=3In(3) + O(e) . (A34)

The second term in Eq. (A30) equals —2.

With the combination of the prefactors in Eq. (A28)
and the results obtained above, the singular part of A is
given by

= (m)? [?22 - %ln(%) _ %

+ (finite terms),

(A35)

where + is the Euler number. The finite part of the subdi-
vergence diagram can be neglected, if the scale equation
is well defined. One can always scale it away [25]. In the
short distance cutoff [25, 28], they appear as

TABLE I. Symmetry factors and integrals of two-loop di-

agrams.

Feynman diagrams Symmetry factors Integrals
FD 211 16 (3B-0)
FD 212 8 34-10)
FD 23 32 (C-3B)
FD 214 16 (3B — A)
FD 215 32 (iB-10)
FD 216 16 -1B

)+... 1 1
+ /0 dtt1+e/2

1
—€/2
(A33)
A= 16171'2 {3(n(cm?a®)]? — In(%) In(cm?a?)
+11In(cm 2a?)} , (A36)
= 16%{[ln(cmzaz)]z} , (A37)
= Ton2 {%[ln(cmzrf)]2 + %ln(%) In(cm?a®)} . (A38)

Now we retrieve the symmetry factors for each two-
loop diagrams (see Table I). As one can see from Figs.
8-13, only Figs. 9, 12, and 13 contain subdivergent di-
agrams. One also can verify this from the results listed
in Table I. The leading terms in the diagrams without
subdivergences such as Figs. 8, 10, and 11, are of order
In(cm2a?). On the other hand, the leading terms of the
diagrams with subdivergence as mentioned above are of
order [In(cm?a?)]?. Furthermore, the leading divergences
of the diagrams in Figs. 12 and 13 are canceled out by
each other. They have the same type of subdivergences
(see the subdiagrams enclosed by the boxes in their own
figures), which are not present in the lower-order (one-
loop) calculation. Another diagram in Fig. 9 includes
the subdivergent diagram (see the subdiagram enclosed
by the box in Fig. 9), which occurs in the one-loop calcu-
lation for D. As usual, it will be canceled when one calcu-
lates the recursion relations, even though the Z4 factors
contain some terms like [In(cm2a?)]?. As we will show in
Appendix B, the three-loop diagrams do not consist of
any subdivergent diagrams. Thus, the subdivergence in
the present expansion only occurs in two-loop diagrams.
The cancellation of subdivergences in Figs. 12 and 13,
and that of Figs. 9 and 3, ensure the renormalizability of
this theory (at least at this order). Leading divergences
and subleading divergences are summed up to contribute
to Z, [see the third and fourth terms in Eq. (22)].

APPENDIX B: THREE-LOOP
CALCULATION FOR Z,

In this appendix, we shall present the calculations for
three-loop diagrams, which are mentioned in Sec. IV.
The diagram shown in Fig. 14, representing the integral,
is given by
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* iy [T g [T ok ~[5- q(F-F) -k
Ipp an = / ddﬁ/ ddq’/ 49k [p ‘ﬂ[_gp ) - k|
oo o -

(¢ + m?)[(F — k)2 + m?](k? + m?)
t -
x / = dt, / Y gt e~ (@ +m) =D +mI Nty —te) o= (P4 m7)te o~ {(R+m?)H{(F= R +m? 1}ty (B1)
0 [1]

To simplify the calculation, we denote a = (g2 + m?), b= [(F— §)? + m?), c = (k2 + m?),d = [(§F - k)% + m2), and
e = (p? + m?). Along the same line as our preceding calculations of two-loop diagrams, we integrate out the time
dependent term first:

t
/ 7 by~ @A HF-D +mI () (R 47y / g, e—{PHm)—(@+mh) (G- +m e
o 0

had 1 * 1
_ —(a+btctd)ty [ —(e—a—b)t, __ — —(etectd)ty _ ,—(a+btctd)ty
—/0 dtye vie v 1]———b+c—e /0‘ dtyb+c—a{e v—e }
1
= ; B2
(c+d+e)a+b+c+d) (B2)
Therefore
oo oo oo . . — l'c' . ]'c'
Fow=[ o[ aqf o - qip—H -
—oo —oo —o0 (q2+m2)[(j)’— k)2+m2](k2+m2) (c+d+e)(a+b+c+d)
=(;1)/ d"p‘/ ddq‘/ 9% LA
2) ) TJew TJew (¢ +m?)(k2+m?)[(F- k)2 +m?
1
X -
(@ +m%) + (2 + m2) + (7~ ° +m] + (7~ R)? + m?]}
B 2%-q
(@ +m?)[(F — k)% + m2){(k? + m?) + (p* + m?) + [(F — k)2 + m?]}
1
x =
{(@ +m) + (& 4 m) + (5~ 9 + m¥] + (7~ B)? + m])
_ 2p-q
(a2 + m) (8 + m?)[ (2 + m?) + (k2 + m2) + (5~ F)? + ]
1
x _ : (B3)
{(g% + m?) + (K + m?) + [(F — 9)* + m?] + [(F — k)* + m?]}
where we have used the identities below to simplify the expression of the equation:
gk 1 —2k2 — 252 — 3m? 1
crdre 2|7 c+d+e a+b+c+d’ (B4)

where § = p — E. To simplify the calculation, we treat Eq. (B3) as a linear combination of three integrals, I3.;_1,
I3;_2, and I3 ;_3. Namely,

-1
Irp 3n = —2—(13.1—1 —2[3,_2 —2I31_3). (B5)

The term denoted by I3 ;_; yields
1311_/ d""/ d"*/ P9
(q2 + m’)("cz +m?)[(F - k)2 + m?]
U2 +m?) + (k2 +m?) + [(F— D)2 +m?] + (G- k)2 + m]}
. 1 TA+1+1) o
dp / d*q / / dzd / d%k
/ P r(l)m)m) o srper ¥ )

[k2+k p(— 2w—y)+P2(w+y)+P d(—vy) + yg® + m?3
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['(2-¢/2)T(3) ~/
=M 55 d" d“*/ / dod
- b e
X
{[(w+y)—(m+¥)2]p2+ ( Y) + yg® + m2}2—</2
T(2—¢/2) [~ o g 5.
— (,n,)d/z_(_f/_Z/ ddﬁf ddi/ / dzdy - qu ; 5 — A]. .
2 - - 0 zty<1 (¢ +m2)y?~</2 [¢2 — §- 7+ $p? + Im?)2-</2

()““F(Z_e/z)/ d"*/ d"//[) dzdydz

. LB —€/2) 217/ .
T()T(2 — €/2) y2~</2[q2 — 25 - G+ 2 p + Zm2|3=e/2
_ (m#2 PR = €/ATE = /2) 21/ 5’ (myt/2 L2 =)
I'(2-¢/2) y2—e/2 {[é - (%)?]p? + Zm2}2-e I'(3 —€/2)

_ (m)4T(2 - e)/ / / dodyds /oo &5 22—€/2 p?
2x2 0 z+y<1 —oo | YETIR(A)P [p? 4 )2
w9 - 22—€/2 1/27 3¢
F(2 6)/ / / dzdydz ——5—— SR m (_i) (m )d/2]:‘(2 +¢€/2) I'(—3/2¢)
0 aty<i —/2p2-e yA T(1+e/2) T(2—e)

73/24 (2 + €/2)['(—3/2€) , 2.3 2%t
</2 dzdydz —————
4 T'(1+¢/2) (m?) /0 / /0 ety<l Ty 2y2+e(A)2+e/2’ (B6)

H

where A = (z+y) — (z— %)*and A = 2A - %.

The working principles of extracting the singularity of the integral is based on the separation of the singular
contributions from different points. All the calculations here follow this scenario. However, one should be able to
keep track of those highly nested procedures. In the last line of Eq. (B6), the prefactors before the integral contain
a leading singular pole of order %, and thus we should extract the contribution up to the zero order in € from this
integral. The extraction of the poles and finite parts of this integral proceeds as

1 1 ,1 P i 22te 1 1 1 ze/2
rdydz—————- = / dz/ / dzdy 3 . B7
R T A I T e e (B7)

Rewriting z,y as y = st,z = s(1 — t), we inherit the simplified equation

1 1,1 s2¢/2
Eq. (B7) = d dsdt
q. (B7) /(; Z/O /(; s s</2t</2[s — s2(1 — £)2 — Zst]2+e/2
1

1 1,1 2€/2
:‘/.0 dZ/(; L dethl‘*’e[l——s(l— %)2_%]2+5/2. (BS)
Recast Eq. (B8) into
E/2 1
Eq. (BS) / dz/ / dette/Z _ %)2+e/251+e(1_sd)2+5/2’ (B9)

p— 2 . . .
where & = %:i—é%—). Consider the integration over s first:

1 1 19 _ eq _ sal2e A ... 1
/o ds e —1351)2+s/2 =/0 "R ;iu s-a]saz):(etz S + [ o =+ e (B10)
A; can be represented as the sum of A;; and Aj,.
1 & 1 &
A=A+ A= /0 dsm +/; dsm . (B11)
Furthermore, the term A;; can be decomposed into the following:
Ay = Ay + Az = /01 ds(T:g)z—ﬂ/—z + ffoldsﬁfl%?m- (B12)
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Aj;2 should not concern us because it contains terms of at least first order in e. We only calculate A;;; as

1 ' 1 1
= [(1 Fea)i- sa)1+e/2] T [ e (B12)

Substituting A;;; into Eq. (B9), we obtain

1 1 2¢/2 1
/ dz/ dt /2 zt)\2+e/2 [ Nite/2 1]
0 o (T+€/2)t2(1- %) (1-a)

2¢/2 1 1 2€/2
= dz/ dt - / dz/ dt <
/(: o (L+e/2)te/2(1 — 2t)2+e/2[1 — %]He/z o o | t/3(1+¢/2)(1 — ZE)2He/2
= B1111 — Biz, (B14)

where we separate the integrand into two parts:

1 1 1 €/2
By = —5 dtd
un =7y Te¢/2 L ‘[) zte/z(l — %)tl+e/2(1 —- i — %)1-{-5/2

1 ! ! 1
= d 6/2/ dt : B15
1+¢€¢/2 /0 £ % o (11— %‘)t1+e(1 -z i)1+e/2 (B15)

The integral over the variable ¢ in Eq. (B15) is given by

1 2€/2 1 1 2€/2
/ dtt1+e(1 —z _Eyl+e/2\ 12 1 +/ dtt1+e(1 —z _ E)l+e/2
0 47 1 4 0 4 4

1 1, w l+e/2 1 2€/2
=/ dt € 24 t)1+e/2 zt +/ dt 1+€ z t)1+e/2
o t(1-%5-1%) 1-%) Jo t*(1-%-1%)
=Cun + Cina. (B16)
The first term C;11; is substituted into Eq. (B15), and the contribution is denoted by B11111, which reads

1 41 1
iz
B = / / dtdz — + - - (irrelevant terms)
wn = f, e pa-n T
=4[9In(3) +4In2 - 1(In2)® + &(1,2) — @(3,2) — £(3,2)] . (B17)
The evaluation of the integral is quite straightforward although tedious. One can find the basic integrals in Appendix

C, whose compositions will be used to represent those complex integrals encountered in Eq. (B15).
Here we take the evaluation of Bi1111 as an example and set aside the rest of similar calculations:

1ol 1 1 t 1
B = dzdt -z
wn= 4[u_H> (el hrrens

1 -4 1
//d‘“" (1—-—%) (1——}
_ 1-% 3 t In(1- %) t In(1-— %)

where A =1—¢t— %. Let » = 1 — %. Equation (B18) turns into

Bji111 = —-2x1/2 [/1/2duln(% +3) + ln(i + 5) - ln(% +3) - ln(é * 3) - ln(§ +3) - ln(% +3) + ln(% +3) .
1

u? u u? u u? N 1—u

(B19)
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Each term in Eq. (B18) can be easily represented in
terms of the basic integrals listed in Appendix C. For
example,

/.1/2 In(} + “)_2ln(2)+3ln(%), (B20)
1 U
/1/2 In(} +3)

1 u

= [210*(2) — 3 10%(2) + ©(3,2) - ®(1,2)],  (B21)

2 2

1/2 In(l1+u In(2
/1 du[n(uj - 1;(2)] -G e 21322)
I " w2510 1) a0 - a2, (B23)
1

/ v 1n(2 2) _ 5n() ~3In(?), (B24)
1 u

1/2 ln( ) ol
[T sy, (B25)
f /Zdu(il:f—“) = —1n?(2) - 8(1,2) + 8(L,2) ,

' (B26)
/ / du(-l-%‘-) = &(1,2) - 8(1,2), (B27)

where ® and = are defined in Appendix C.
Now we turn to the calculation of Bj;112, which is

defined as Byi112 = [, dtCiyza:
1 1 2€/2
B2 = / / dzdtt1+e(1 —z D)l
L€/2
/ dz z)1+e/2

1
/ dt
Y t1+e

“‘—4(1 z/4)

1,1 p1 2€/2 1
/0 / / dZdtdszc/-z 1+e(1__z_t)2+e/2
///dzdsdt T (1
€ zt
x [(—5) In (1 - Z) +

] 1+e/2° (B28)

3 ln(z) ~3 ln(t)] +

In(1 - %) +1In(z) —
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where the t-dependent integral can be separated into

! 1
/ dt =
o t1+e(1 — ﬁt)1+e/2
1 _ _ A4\1+e/2 1
0 tlte (1 _ﬁ)1+€/2 0 tlte

tog 3 1
._./O dtt—cm+0(6)+/ dtt1+e

=D; + Dy + O(e) , (B29)
with 3 being ;1. The term D, in Eq. (B29) is
Dlz/ldt §~ = —1In(1 - B). (B30)
o (1-p)

After substituting the above equation into Eq. (B28), one
has

2/2In(1 — ;1)

/(; dz(_l)W
4—2)—In3 - z)]

_ [ g
=/ 4 -9
=IA—-IB+4ID (5)

O(e)
(B31)
Inserting D, in Eq. (B29) into Eq. (B28), we have

1 1 1 ze/z
/O dtt1+e X/O dZ(l — %)1+e/2

EN e g

' In(2) .
+/0 dz( ~)]-FO()

(,2) [41n(%) - SLa+ —;—Ic] :

Now we move on to calculate the contribution of A, in
Eq. (B10). By inserting A, into Eq. (B9), one has

Il

(B32)

I

T ———

:41n(§)_i€+/01/()1dzdt(§;) (%) [— 1 1-%

zt)z

In(t )] . (B33)

Here we decompose the second term in Eq. (B33) into three parts, P, , P;, and Ps:

P = / / dz dt‘n(l_‘,,;

=/ dt (t M8 =9) | g

(1—t>
/dt PGk

1-%)

[ (@)

b [ [ asa s

- 5) —/ PGl LI

—[4Ip + I4] — 4In(3) , (B34)
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P2—/ / dtda ln(z = 01 (111_(_2%):[0,

P3_/ / dtdz lf(t,)t)z = Io.

Now we go back to finish the calculation of A;; in Eq. (B11):

/ / dzdt——F—% ln LEL%L)

zt)z
/ / dz dtln(l —,t; / / iz dtln(t)+ln(1n_)2z_%)
=[4Ip + 14 +4In(3)] + Io +/ dt4ln(:1 - / / i _4 ))(((1“)% N

=[4Ip+I4+4In(3)]+ Ic + L, — M, +M2,

where L, My, and M, are analyzed below:
In(3 % t
n= [ a [—*a- 5 - (1-5))
4 1 3 t 4 t
-fe{liratpl (G009}
3
/ dt In (— - ——) + [—4ln (Z) + Ip —4ID].

The first term in Eq. (B38) is divergent. As we will show later, it will be canceled by a term in M.

M1=8/1/d2t (A +121n(1——)u—8/ dil ln(l—z)
o[ S

=8[2In(2) — 31n(g) +1n%(2) + <I>(§,2) - ®(1,2)] - 8Ip,
where A = (1—-%)?andu=1-£.

1 _ 1 "
e[ 4im () G Lo £ ()
Y 0
1/2 1+u 1 u 14 /3 ¢
A CYEIGH A )
3 ¢

=4[21n(2) + 31n(2) + 210%(2) — 1 10%(2) + &(%,2) - ®(1,2)] - /ldtéln (- - —) ,
0

4 4

where, as mentioned above, the first term in Eq. (B38) is canceled by the last term in Eq. (B40).
The term Bi;;2 in Eq. (B14) is calculated below:

2€/2
Buz = 1+e/2/ / te/"’(l Z)ztes/2 =/ / dzdt - “)2 +0(0) = 41n(3) + 0(e).

The second term I3 ;_; in Eq. (B3) is calculated as follows:

Iz = v dq Z:d
[ ] (q2+m2)[<p B+ ma{(K2 + m?) + &2 + (5 R)? + 2m7])

{[q2 + (@ - «i’)2 +2m?) + [k2 + (5 - k)2 + 2m2]}
ri+1+1) d— do -
wap e e[ G mz)f / iy

(B35)

(B36)

(B37)

(B38)

(B39)

(B40)

(B41)
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2+ a(k? +p* — k- F+m?)

X{(l—w—y)[(P k)? +m
+y(P? + ¢+ kK —-p-G-P- k +m? )} 72 + (irrelevant terms)
F(3) d d4 ﬁ q d d/2
/ d / d®q agees / /0 z+y<1d:cdy/ z(m)
- 1-€/2) 1
F(3) {[1— (1 - 259)2%p? + 5 §(—y) +yg® + m?}>~</2
5/2) R / F(l — 6)
— (ﬂ.)d/2 / dé / /0 I+y<1da;dy o mz)( )d 2 - 5/2)
q- (2A‘T)

A - R P
B F(l —€) . Yy m
= / /0 z+y<1d dyA3—5/2A1—e [(AA)I/Z

3d/2r( m2 3/2e Y
= ) . ; , (B42)
0 I+y<1 A +e(¥ ~ Z3,«A_2)1+e/2

= }AL — 2A. The integral in Eq. (B42) is analyzed below:

2+e—-2(1—€
+e—2( )‘,rd/2 F(—%e)
F(1—e)

where A = (z +y)? - ;(z + y)%, A
1

dzdy -
/ [) ety<1 A3+e [yr;_f_](A — Yyite/2
1 1
s X st 1
__/ / dsdts — g)sl+e/2t1+s/2 (S _ % _ %)1+e/2
1
/ / dsdt sl+ete/2(1 8 _ t)1+s/2 [ %

1
/ / dsdt 1+ete/2( g — t)1+e/2
=S+ R, + R2+ O(e),

where the transformations of y = st and z = s(1 — t) have been used, and the calculations for S, R;, and R, will be

(B43)

presented successively:

= [ [ e : —%%m —5 [ty (33 (e D] ) - sal a0

The reason for the rise of R; and R, can be revealed by the following decomposition:

1 1
1
R1 + R2 =’/0 A detsl+ete/2[1 _ % _ %]1+€/2

1 1
dsdt
/ / t</2(1 )1+5/2 site(l — 12)i+e/2

1 1 1
1 1 1
= dt d -1 d (B45
;g |, e [(1—;1—»“6/2 }*/ e —t>1+6/2/ Yo )

where

1 1 1 1
R, = dt d
1 /0 t€/2(1 - %)1-{-6/2 /0 335(4 — t)(l _ Z%?)1+e/2

- [ g f, e o0

fdt[ln (1_ )( t)]=41n2(§)+IA—IB,

(B46)

and
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1 1 1 1
R2=/o dtt‘(l—%)l‘*"/z/o d.sng_e

=/1dt 1 (_1_) +/1dt[ln(t)+1/21:1(1_%)] +0(e)
1] 1] 3

1= i-D
~4In (%) ( ! ) +Io+ 3 1a (B47)

—€

The term I3;_3 will be equal to I3 23, which will be shown later.
For the other three-loop diagram, we can still employ the same technique. To begin with, we write down the
corresponding integral for Fig. 15:

oo Y i B ol —"-E) X (=P q) oo te
I = 4 dd / d°k (=P / z/
FD 312 /_m ”/.m 1 S e rm@ rm) @+ md) Jy e )

s e~ [F+m? +F=F)? +m?|(ta —ty) o~ [g° +m?+(F—)* +m]ta o~ (07 +m?) |ty | (B48)

Again, the time dependent part of the integral in Eq. (B48) can be integrated first. For convenience, let a =
(®® +m?),b=[(F - §)* + m?|,c = (k* + m?),d = [(F - k)* + m?], and e = (p* + m?). Then we have

oo te 0
/ d.tme—[c+r.‘i+a+b]t= [/ dtye(c+d—e)t,, + / dtye(c+d+e)tv]
0 0 —oo

- dt, —(a+b+c+d)t, (ctd—e)t. _ 1 _
L € c+d—e(e )+c+d+e

2
T (c+d+e)(at+btc+d)

(B49)

In the same spirit of the calculation as performed in the previous case, we separate the integrals into several pieces,
each of which only contains an isolated pole, and then extract the corresponding singular parts. One can start with
decomposing 7 - k into:

- 1 -
7k= 5{—[1;2 + k% 4+ (F = k)% + 3m?] + 2(p® + m?) + 2(k? + m?)}. (B50)

Then one can rewrite Eq. (B48) as —I32-1 + 2I3.2_2 + 2I3.2_3, where

oo oo {o o} - g g 1
Is21 = / a5 f ai§ / 4k P g _ ., (B51
T e T e (B mE)(@ +m2)(p? +m2) (k2 4 g2 + (5— )2 + (7 K)? + 4m?] (B51)

o

L= /w d"p‘/w d"«r/m a°F P9 _
oo P T m2) (@ mR)[p? 4 R+ (5 R)2 + 3]
1

x = — : (B52)
(k2 + ¢ + (F— @)% + (§' - k)? + 4m?]
has= [ ai [ a7 o Z:d _
—oo ~oo —o  (p? +m?2)(q% + m?)[p? + k2 + (P — k)? + 3m?]
1
(B53)

X =, .
2+ + (F— 97 + (F— B)? + 4m?]

Again, we have three different types of the integrals to handle.
The calculation for the term I3 3_; is shown below:

oo oo co - - = 1
Iszoq= / a5 / d4q / 4k P g _
—oo —o0 —oo (2 +m?) (g +m?) (P2 +m?) k2 4 g2 + (§- §)? + (F— k)2 + 4m?

=1/°°ddp'/°°ddq” pg /ldx/mddl}' ! )
2 -w o (P2+m2)(? +m2) Jo —oo k2 —zF-k + zp? + 2¢? — zp- §+ m2?

_1 /°° oy 5-q / tapdr2D = €/2) 1
2 [ o (@ + m2)(¢ + m2) J, r'2) [(=z- %’)pz — zf- §+ zq? + m2|1-¢/2
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_ (1 —¢/2) /°° ddﬁ/‘” 7 p-q 1
2 (p® + m?)(g% + m2) (x — £)1—e/2(pz _ %p*. q+ %qz + %_)1 €/2

d/zI‘(l—e/2 I‘(2—€/2 d d
= p 7 dzd
2 (1 -—¢/2) / d / d / _/ z y mz)AI /2

y P gy /?
[P2 — %’.‘lﬁ q + _Eq + LmZ]Z—e/z

41 — ye/? = (zy
( 6)./ / da:dy/ dd_. 2)Al-e/2 f[ZY _ _’-'_Z 2(2€@l 11—
(¢ +m)A {[ (ZA) la +Am} €
dF 1-— —€e/2
( € / / d_,cdy/ g (zy)y 1
2AA1 eAl—€/2 (q + _y__mz)
'rr3d/2 o 2y3¢/2 oyl +3e/2y=</2
-4 ( ) it / / d;z:dy A1+6/2A2+5 ’ (B54)
where A =z — 543 and A = % — ;—g—)z. The integration over = and y in Eq. (B54) is carried out as
1l 1+e /2
Ty 3 y
A /0 d:l:dy (my)1+e/2(A — E})l+e/2 / / d-’L'dy zlte 1 _ % _ )1+€/2

_ Y 1 .
_/ dy(l — E)1+e/2/ dzzHe(l _ 74_f_!;)we/g- (B55)

Rewrite Eq. (B55) as

1 €/2 1 1
Y 1 1 1
F S N _ 1
/0 y(l_ n)i+e/2 {/o T oite [(1_ =) 1] +A z1+e}
1
1 €/2
y T
= dy—Y | _m(1-

A Ya-pen “( 4~y> .

One also expands the terms in Eq. (B55) up to the zero order in €. The finite part of the first term in Eq. (B56) is
found to be

+:1;+O(e) . (B56)

/ dy gy nd —) ~ 1~ )] = 4 )7 + Lu ~ L. (B57)
The second part is extracted in the same manner:

% B 1 1 In(y) In(1- %)
/dy — c)l+e/2~{L dy(l-—%)+2[(1——¥) 1-4 }+O(6)

- [4111 (%) + (o - IA)] . (B58)

Now we turn to the term I35_5:

1
I = d""’/ dd*/ ddk/ / d:cdy
322 / 0 z4+y<1 4(q% + m2) (¢? +m2)
[ (m+y)p k+(w+y)p +yq? — yp- ¢+ m??

r'(3) . . edund/2 L2 €/2)
F(1)3 dd /mddq4(q 2 1 m2) / /Oz+y<1d dymd/? )

p-q
X
A2—e/2[p2 + _X_q %ﬁ' 7+ EA__]Z €/2
ot —€/2) T(1-— 7 ()7
:/ dd—’ : 2 d:l)dyﬂ'dr(2 6/ ) ( 6) 2 21y q EiquZ m2y11—
4@ +m2) Jo Jo sryar [(3) T(2-¢€/2) A2-</2{[X — (F5)%}¢* + FT}'~°
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1 r(i-¢ /. ¢ (W)d/zr(z + €/2) ['(—3¢/2)
AS—-e/2A1-—e (g% + T2)1-<(g% + m?) I'(1+¢€/2) T(1 —¢)
ad/2 1T(2 +€/2
= q3d/ I‘(—3e/2)/ /(; z+y<1d 8[‘21 T 652; A3+Eil+e/z (B59)

Here A = (z +y) — 3(z + y)? and A = £ — (3%)?. The integration over « and y in Eq. (B59) is performed as

dzd y " [ dsa st
= t
/ /(; piy<l T y — ()22 p3+e /0 /.; s (st)1+</2A(A — %)1+e/2

1 1
1
= dsdt . B60
/; /0 sirete/2(1— 2)[1— & — L]t+e/2 (B60)

The s dependent part in Eq. (B60) can be separated into

! 1
/(‘) d831+€(1 - iz [ - ] / d331+€(1 - )1+e/2

=/O T +/0 ds ———————se(l_‘:—é)lwz +/U ds—r- +0(6). (B61)

4—t

L L Y

The first term in Eq. (B61) can be integrated out as

/ds “41)(1__) [1n(1—£>—1n(1—§)]. (B62)

Inserting it into Eq. (B60), we inherit

1 —_—
/ dt (i‘t—t) [m (1 - 2) —In (1 - g)] = 4(Ip - Ig) + 2In(3) — 31n(3). (B63)
0
Again, inserting the second term in Eq. (B61) into Eq. (B60), one has
/ dtl__ [ ln<1——)] =14 —Ip +4I0°(%). (B64)
After substituting the third term in Eq. (B61) into Eq. (B60), one obtains
L | ! 1 e [In(t) + In(1 — %)) 1 4
— . _ - = —Ic—-1
[ose oty (Y (o jorers] e
Here we evaluate the integral of I3 2_3:
1
Iz s= / dd*/ d"*/ dF P .
s p2+m2)(q2+m2) k? —75-k+p%+zq? — zp- 7+ m?2)?
=_/ dd~/ g p-q / dent/2 DAL= 5/2) 1
4 o2+ m2) (@ + m?) (2 (3p%—ap- §+ zq? + m2)1-</2

d/zl‘(l—e/Z) dz/ ddd/ i P q 1
(312 o+ m?) (& +m?) (§)1/2(p? — §25- G+ 5¢° + §m?)i-e/2

=1

4

G gy P v

4 (3)1=</2 y(qz +m?) (p? — Szyp- g+ éxyqz + dym2)2-</2
1

4

/2F(2 €/2) a2 T(1 - dg vy~ §-(3zyq)
e O e ) e | st e e 5 o

_1(mrQ-e dd* g (23611)1,4"/2
1 @ L@ rmy - E(qz + Bm2)i-c
1 (m)T(1—¢€)2 (w)d/zr(z +€/2)I(—3e y—/?zy 3e
T4 @)z 3 T(A-er( +e/2) / / dedy, (A)i—< ( ) (B66)
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Here A = $zy — (2zy)?. The integration over z and y in Eq. (B66) is obtained as

o Jo Y3 [%(wy)—g(zy)z]lﬂ/?'— 3 // :cy 1+e/2( )1+e/2( _3&)1+s/2

:~3/ dy[ 3] —3Ig + Ofe).
0 Y

Finally, we summarize the results of two three-loop calculations. One should observe that there are not any
subdivergences in three-loop diagrams and therefore no such term as In[(cm2a?)]? exists. In the following summation
of both three-loop calculation results, we demonstrate this observation by explicit calculations. By collecting all

previous results, the contributions of FD 3/1 and FD 32 in ¢~ 2 are given by
-_— / 4\ —1
FD 311 — - |2 (22) (“3)m (2 - 23 Lp (2 () m(2) -2l F 4In —l=o0.
24 2 € 3 2 € 3 2 3 €
—3e 4 1 1 3e 4 1
. = —= s 41In -1 =0.
s () on(3) (1) 2 ()1 2) (5)(-0)

These confirm our observation mentioned above. The consequent results of the leading divergences which contribute
to Zg are used in Eq. (22).

(B67)

(B68)

(B69)

APPENDIX C: BASIC INTEGRALS

We define E(z,s) = 300 | 27, and ®(z,s) = 3 oo (—1)" 2.

Lo [y dui=s) = —210°(3),

Ip: [y duf=8) = 210°(3) — 4(2(3,2) - 2(3,2)].
Ic: [y dug®%y = —42(},2),

Ip: flduln(lu—"") _ ~—E(%,2),

Ig: fo w28 = _5(1,2),

Irs [y Jy dudo™0r ) = —[2(3,2) + 31n(3) - 1.
Ig: f duln(u)ln(l——)’2—31n( ) — 45(3,2)
Ig: fo fo dudv iz 4ln( ) — %1 (%)+%

I;: fo duln(1l — %) =3In(3) - 1.
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